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Abstract
Visual programs for modeling dynamic systems have
become popular because they simplify the construction
and maintenance of math models.  These products also
offer an appealing variety of analytical tools that aid the
evaluation of model performance.  With the addition of
code generators, these tools can convert their visual
diagrams into source code that can run standalone or be
integrated within an existing software product.  The
simulation industry has experienced a growing trend of
integrating generated code with existing, simulation
frameworks.   Because the simulation framework and
the auto-code generator are based on independent de-
signs, developers must add software layers that over-
come incompatibilities.  Ideally, the developer strives to
design a reusable interface for the visual-modeling
product.  This frees future projects from handling auto-
code integration issues.   However, achieving a reusable
interface may require customization of the visual mod-
eling product and restrictive guidelines on its use.*

Many simulation customers at NASA Langley Research
Center have selected Mathworks’ Simulink® for visual
modeling.  Mathworks supplies a code generator for
Simulink called the Real-Time Workshop® (RTW).
The simulation software group at Langley created a
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reusable, object-oriented interface that integrates RTW
code with the Langley Standard Real-Time Simulation
in C++ (LaSRS++).  LaSRS++ is an object-oriented
framework for creating the real-time simulations that
run in Langley’s simulator facilities.1

Introduction
The design of the LaSRS++/RTW interface has two
main goals.  First, LaSRS++ should treat all vehicles
equally, whether or not they contain RTW code.  Sec-
ond, the design should avoid changes to the auto-code
and to the user’s process for generating the auto-code.
The latter protects the interface against obsolescence
with future RTW releases and minimizes additional
procedures for the Simulink user.  These goals result in
the following requirements:
1. The interface shall support execution of auto-code

in the simulation modes: RESET (initialization and
scenario definition), TRIM (solve for steady state
at initial condition), HOLD (freeze the simulation),
and OPERATE (propagate through time).

2. The interface shall support the execution of auto-
code through multiple cycles of RESET-TRIM-
HOLD-OPERATE.  In other words, a simulation
with auto-code must be able to run several scenar-
ios or the same scenario repeatedly without the
need to shutdown and re-execute the simulation.

3. The interface shall allow multiple, heterogeneous
Simulink models and multiple copies of the same
model to operate in the same simulation.  LaSRS++
supports multiple, heterogeneous vehicles in a
simulation.  Failure to support multiple, heteroge-
neous Simulink models limits vehicle models that
contain auto-code to a single instance in a simula-
tion.  It also prevents a vehicle model from con-
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taining more than one auto-coded Simulink model.
Failure to support multiple copies of the same
model precludes reuse of auto-code within a simu-
lation.  For example, a user could not build an ac-
tuator model in Simulink, generate auto-code from
it, and use an instance of the auto-code for each
control surface.

4. The interface shall use the auto-code as generated.
To add new features to the auto-code, developers
must customize RTW code generation by modify-
ing the Target Language Compiler (TLC) scripts.

Applying these basic requirements reveals a host of
problems.  Many are rooted in the design of RTW auto-
code, which focuses on real-world execution rather than
execution in a simulation.  The biggest issues are:
1. RTW does not support a “trim” mode; the auto-

code initializes to a defined state then operates.
2. RTW auto-code is designed to run once, i.e. in a

single initialize-operate loop-terminate cycle.
3. Until version 3.0, RTW did not directly support

multiple models or copies of the same model in the
same program.  This support is provided in the
newly introduced Generic Real-Time Malloc
(GRTM) Target.  Thus, the LaSRS++/RTW inter-
face will not work with prior versions of RTW.

In addition, the RTW auto-code design conflicts with
two major LaSRS++ design goals:
1. Minimizing transport delay† is a design goal for

LaSRS++.  RTW’s design for resolving continuous
states tends to increase transport delay.

2. LaSRS++ simulations are designed to run at any
fixed frame rate.  The frame rate for a simulation is
established at runtime.  RTW generates auto-code
with a pre-determined frame rate that is taken from
the simulation parameters defined within Simulink.

All of the above issues are overcome with a combina-
tion of interface design choices, user guidelines on
Simulink model construction, modification of TLC
files, and procedural workarounds.
                                                          
† Transport delay is time between the generation of in-
put and its visible affect on vehicle dynamics.  Fre-
quently, the term is used to refer to the time between
pilot input and the response of the visual or motion
system to that input.

Overview of the RTW code design
RTW uses the Target Language Compiler (TLC) to
generate code from a model.  The code-generation rules
are packaged in a set of scripts processed by the TLC. A
package of TLC scripts is called a target.  RTW ships
with ready-to-use targets for a variety of runtime envi-
ronments.  The Generic Real-Time Malloc (GRTM)
target that is required for the LaSRS++/RTW interface
follows the basic design described below.

All model data is connected directly or indirectly to a
central structure of type Simstruct.  Access to the model
data is coordinated through a Simstruct instance, of
which there is only one instance per model.  Because
the Simstruct type is subject to change in future ver-
sions, the Simstruct instance is not intended for direct
access.  Instead, RTW supplies functions for manipu-
lating the Simstruct data.  In this manner, it encourages
object-like interaction with the Simstruct data.

The generated code consists of three classes of func-
tions: initialization, operation, and termination.  The
initialization functions include the model registration
function which is named after the model and the
MdlStart() function.  The model registration function
constructs, populates and initializes the Simstruct in-
stance. The MdlStart() function initializes all states in
the model and performs other one-time initialization
tasks.  The operation functions include MdlOutputs(),
MdlUpdate(), and MdlDerivatives().  MdlOutputs()
computes the output of each block in the model.
MdlUpdate() updates discrete states.  MdlDerivatives()
calculates the derivatives for continuous states in each
block.  The termination function is called MdlTermi-
nate(); it executes shutdown code for each block.

RTW includes a code library that is reusable across all
models.  This library provides fixed-step integration
functions, a data logging function, and external mode‡

interface functions for the generated code.

LaSRS++ Interface Design
The LaSRS++/RTW interface is encapsulated in a sin-
gle class, SimulinkModel.  Figure 1 illustrates the de-
                                                          
‡ External mode is a feature that allows the Simulink
block diagram to communicate with an external process
executing the RTW code.6
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Model object will contain.  The initialize() method re-
sets the model to an elapsed time of zero.  The simula-
tion calls initialize() in RESET mode. The update()
method operates the model; as will be discussed later, it
is called in both TRIM and OPERATE modes of the
simulation. The destructor frees all of the memory used
by the auto-code and terminates its operation.  Simu-
linkModel also provides an error monitoring method,
error().  This method returns true if the auto-code re-
ports a non-fatal error since the last time error() was
called.  SimulinkModel handles all error reporting.
The client code decides whether it will continue past a
non-fatal error.

SimulinkModel derives from SimulationModel.  Simu-
lationModel is the base class for all math models in
LaSRS++.  Thus, LaSRS++ treats the SimulinkModel
as a specialized math model.  SimulinkModel must sup-
port the basic behaviors of all SimulationModels.
SimulationModels contain references to a Timer, which
encapsulates the time step for the SimulationModel, and
to a Mode, which contains the current simulation mode.
SimulationModels must behave appropriately based on
the information in Timer and Mode.



#include "SimulationModel.hpp"

extern "C" {
#if !defined(RT) // Mathwork's simstruc.h requires that RT be defined for RTW code.
#define RT
#endif
#include "simstruc.h" // SimStruct cannot be forward declared; it is a typedef.
typedef SimStruct* (*SimulinkModelConstructor)(void); // Model registration function.
}

class SimulinkModel: public SimulationModel {
public:
SimulinkModel(const Mode& simulation_mode, // Simulation mode.

const Timer& simulation_timer, // Time step for model.
SimulinkModelConstructor model_constructor, // Registration function.
bool use_external_mode, // Enable external mode.
unsigned int external_mode_tcp_port, // Port # for external mode.
bool wait_for_start_message, // External mode option.
bool data_logging); // Enable data logging.

virtual ~SimulinkModel();
virtual void initialize(); // Redefine SimulationModel::initialize().
virtual void update(); // Operate the Simulink model.
void putRootInput(double input, unsigned int index) {root_input[index] = input; };
double getRootOutput(unsigned int index) const {return root_output[index]; };
bool error() const {
bool return_error = model_error; model_error = false; return return_error; };

private:
SimStruct* simulink_structure; // Model data and pointers to model functions.
mutable bool model_error; // Set to true when model reports an error.

// External mode and data logging option variables.
bool external_mode_enabled; // Enables extermal mode if true.
bool wait_for_start_signal; // Sim pauses for simulink start message.
unsigned int tcp_port; // TCP port number of external mode connection.
bool data_logging_enabled; // Enables RTW data logging if true.

// The simulink model I/O is represented as single dimensional arrays.
double* root_input;
double* root_output;
unsigned int root_input_size;
unsigned int root_output_size;

};
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Figure 2  Simplified Header File for SimulinkMode
4
American Institute of Aeronautics and Astronautics

linkModel class borrows
main.c file that ships with
kModel can call RTW li-
ging and external mode¶.
 Arguments to the Simu-
e and configure these op-
 be enabled for more than

ram.  Only one Simulink-
ternal mode because the

al data.

the customer to select,
t, variables internal to the
           
 creating a standalone ex-
erated code.
 not been tested to date.

Simulink model for recording.  However, since RTW
code is designed to run in a single initialize-operate-
terminate cycle, the RTW data logging is only guaran-
teed to function for the first run of the simulation.  The
data logging functions may return errors on subsequent
runs.  These errors are not fatal and do not affect the
operation of the model, but the resulting data log may
corrupt.  The presence of ToWorkspace blocks in a
Simulink model require that data logging be turned on
because RTW adds their input signals to the data log.
Disabling data logging for a model with ToWorkspace
blocks causes a segmentation violation during opera-
tion. By default, RTW data logging bases its memory
requirements on the start and end times defined for the
model.  The SimulinkModel modifies the Simstruct so
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that it will run for infinite time#.  Obviously, RTW can-
not allocate memory for an infinite-time run.  RTW will
issue a warning and use a default buffer size of 1024.
To remove the warning and use a different buffer size,
the Simulink model developer must set Simulation ->
Parameters -> Workspace I/O -> ”limit rows to
last”, prior to generating code.

Though it significantly reduces the complexity of add-
ing RTW code to LaSRS++, SimulinkModel is not a
complete solution.  The SimulinkModel class does not
know how the indices of its input and output vectors
map to other variables in the LaSRS++ simulation.  The
software engineer must still create client code that di-
rects input data from the LaSRS++ simulation into
SimulinkModel and directs output data from Simulink-
Model into the simulation.  The client code must also
monitor SimulinkModel for non-fatal errors and trigger
appropriate actions.  The class must also exercise the
update() method during the appropriate LaSRS++
modes as discussed in the section “Simulation Mode
Support”.

Solving Interface Issues
The simplicity of the LaSRS++/RTW interface design
masks the implementation choices and procedural
workarounds necessary to meet the requirements stated
in the introduction.  This section details these solutions.

Multiple Simulink Model Support
Only one target supports multiple Simulink models in
the same program, the Generic Real-Time Malloc
(GRTM) target.   The LaSRS++/RTW interface will
operate only with auto-code generated by the GRTM
target.  GRTM first appeared in RTW 3.0.  Thus, the
LaSRS++/RTW interface requires RTW 3.0 or later.
Furthermore, the LaSRS++/RTW interface only works
with code generated for single-task operation.

GRTM differs from the other pre-packaged targets in
two fundamental ways to enable multi-model support,
as illustrated by comparison against its older sibling, the
generic real-time (GRT) target.  First, GRT statically
                                                          
# This is accomplished by calling ssSetTFinal() to set
the final time to zero.  Simulink interprets a final time
of zero as equivalent to an infinite final time.

allocates all persistent data with a mixture of internal
and external linkage; moreover, GRT uses the same
variable names for the major data structures in all auto-
code that it generates.  This prevents multiple Simulink
models from running in a program.  For each common
name with external linkage, the linker would assign the
same memory location.  All Simulink models in a pro-
gram would then share the same memory locations,
leading to data corruption.  On the other hand, GRTM
dynamically allocates all data structures and effectively
binds them to a Simstruct pointer returned by the
model’s registration function. Thus, each instance of a
model receives its own copy of persistent data, and the
generated code contains no common variable name with
external linkage.

Second, GRT uses the same names for functions that
operate the model** and gives these functions external
linkage.  Thus, distinct Simulink models cannot exist in
the same program because the function names would
conflict at link time.  GRTM avoids this conflict by
declaring the functions with internal linkage.  Only the
registration function has external linkage and its name is
the same as the model.  Thus, all distinct models must
have unique names to coexist in the same program.  To
make the operation functions available externally,
GRTM places function pointers in the Simstruct struc-
ture and assigns the addresses of the generated functions
to the pointers.  The functions for a Simstruct instance
are executed by exercising the function pointers that it
contains; i.e., each Simstruct structure is bound to the
functions that act on it.  This technique is similar to the
virtual function mechanism in C++.3

Unfortunately, the integration algorithm is not among
the functions stored as a pointer in the Simstruct in-
stance.  Thus, all models in a program must use the
same integration algorithm.  In fact, the Simulink user’s
selection of integration algorithm in the Simulation Pa-
rameters dialog has no meaning to the LaSRS++/RTW
interface. The setting does not influence the generated
code.  It only influences the template makefile that
RTW generates with the code; it adds the file containing
the selected algorithm to the list of files to be compiled
                                                          
** These functions are MdlStart(), MdlOutput(),
MdlUpdate(), MdlDerivatives(), and MdlTerminate().
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and linked.  LaSRS++ simulations use their own make-
files and ignore the generated makefile.  The LaSRS++
makefiles allow the program creator to select any of the
RTW integration algorithms at build time. The simula-
tion will apply the algorithm, with which it is linked.

The library code shipped with RTW is reused across
many targets.  This code uses pre-processor variables to
customize itself for a specific target.  The variable RT
must be defined when compiling the code for all RTW
targets.  The variable RT_MALLOC must be defined
for the GRTM target.  Thus, the LaSRS++/RTW inter-
face and all RTW library code must be compiled with
the variables RT and RT_MALLOC defined.  In addi-
tion, on UNIX systems, the variable UNIX must be de-
fined.  Unfortunately, the RTW library code relies too
heavily on pre-processor variables to also define the
number of continuous states in a model (NCSTATES)
and the number of sample times in a model (NUMST).
Obviously, code utilizing these pre-processor variables
will be compiled with only one value for each variable
and those values will be applicable to only one model.
All other models would not function properly, defeating
the ability to have multiple models in the same program.
However, the Simstruct structure contains the data rep-
resent by these variables; and functions†† are supplied to
extract this data.  NCSTATES can be replaced with a
call to ssGetNumContStates(). The function ssGetNum-
SampleTime() can be substituted for NUMST.  By ex-
amination of the RTW library source, it is apparent that
some attempt had been made to remove these pre-
processor variables from code exposed when
RT_MALLOC is defined; however, the task was left
incomplete.  The integration algorithms still contain a
reference to NCSTATES. To repair this defect, a copy
of the code was made for the LaSRS++/RTW interface
and NCSTATES was replaced with ssGetNum-
ContStates().  Likewise, the code for external mode
references NUMST.  Once again, a copy of the code
was made; and NUMST was replaced with a call to
ssGetNumSampleTime()‡‡.  Also, grt_malloc_main.c
                                                          
†† Most Simstruct functions are actually implemented as
pre-processor macros.
‡‡ A large number of function signatures in the external
mode code also had to be modified to make the switch.

uses NCSTATES and NUMST heavily.  When sections
of this code were copied into the methods of Simulink-
Model, NCSTATES and NUMST were replaced with
their functional equivalents.

Transport Delay
The LaSRS++ simulation framework minimizes trans-
port delay as a design goal.  As one means of achieving
this goal, LaSRS++ simulations resolve continuous
states (i.e., integrates derivatives) as they occur in the
execution path, and LaSRS++ propagates the results
immediately.  Simulink, on the other hand, collects the
computed derivatives and simultaneously integrates the
derivatives as the final step of operation.  At best, the
output of each integrator will not affect the behavior of
the vehicle until the following frame.  If several states
are chained together in the execution path, the inputs
influencing the first derivative may not affect vehicle
behavior for several frames. For single-pass integration
algorithms, the input’s influence on the model’s output
will be delayed one frame for each state on the chain.
Simulations commonly use single-pass integration algo-
rithms because they are computationally efficient; they
are susceptible to this delay. Systems that use a large
number of transfer functions are also vulnerable to this
problem. Mathworks’ design is correct for a continuous
model.  But, its discrete representation introduces an
artifact in the form of transport delay.  At the frame
rates normally run for a simulation, the resulting delay
can lead to vehicle response that the pilot finds unreal-
istic or that causes the pilot to adapt differently than in
the actual aircraft.

The solutions are limited.  One can write a new TLC
that reflects the modeling philosophy of LaSRS++, but
this solution requires a large resource commitment.  The
next two solutions require additional computation,
which the computer may not be able to support.  One
could use a multi-pass integration algorithm.  For a
model with n states in its longest chain, the algorithm
must run n passes. The input will now influence the last
state in the chain with a single integration.  But, the
results are still delayed one frame.  Also, a multi-pass
algorithm mixes passes where the input does not influ-
ence the last state with passes where the input is influ-
ential.  Passes where the input is influential remain until
the nth frame after introduction.  Thus, the input’s total
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influence is spread over n frames. Alternatively, one can
run the RTW code at a higher rate; ideally, the rate is
the product of the simulation rate and n.  This approach
resolves the total influence of the input in one simula-
tion frame.  Depending on the purpose of the Simulink
model, the vehicle plant§§ may have to run at the higher
rate to maintain realistic behavior.  Thus, this approach
is frequently more computationally expensive than the
multi-pass integration algorithm.  The processing power
of the host computer may prevent the RTW code from
running at the “ideal” rate, forcing the project to ex-
periment with different simulation rates to balance
computing resources and vehicle response.

Using discrete blocks instead of continuous blocks may
not solve the problem.  Like continuous states, discrete
states are not updated by calling MdlUpdate() until after
the block outputs are calculated by calling MdlOutput().
Some algorithms, like the Euler algorithms in the dis-
crete integrator, produce pure delays.  However, some
discrete algorithms are spread over both the MdlUp-
date() and MdlOutput() functions to take advantage of
currently computed inputs, eliminating the delay.  But,
as discussed in the section “Simulation Mode Support”,
some of these blocks may not behave correctly for
TRIM mode and cannot be used.  Thus, the Simulink
user must be aware of the limitations of each discrete
block to effectively use them for simulation.

Variable Time Step
LaSRS++ allows the user to define the time step during
simulation start-up.  The Timer member in the Simula-
tionModel base class communicates the simulation time
step (or a multiple or integral divisor of the simulation
time step for multi-rate simulations) to the math model.
Hand-coded models are designed for a variable time-
step.  It is necessary for components that are reused
with a variety of simulations.  However, the default
RTW code generator does not provide an interface for
changing the time step of the auto-code. When the code
is generated, RTW imposes the time step defined for the
model in Simulink’s “Simulation Parameters” dialog.
                                                          
§§ The vehicle plant models the physical aspects of the
vehicle.  Usually, it consists of the aerodynamics model,
the engine model, the gear model, and the control sur-
face models.

The TLC could be modified to provide a means of
changing the time step.  But, the need does not yet jus-
tify the effort at LaRC since a workaround exists.
When a new time step is required, the RTW auto-code
is regenerated with the new time step, compiled, and
linked into the simulation.  Although the simulation
projects at LaRC use a variety of time steps, an individ-
ual simulation project tends to settle on one time-step.
Thus, the workaround, though laborious, is infrequently
used.  To protect against accidental mismatch of time
steps in the auto-code and LaSRS++ simulation, the
SimulinkModel class compares the time step that it in-
herits from Simulation model with the time step stored
in the auto-code.  If the time steps differ, Simulink-
Model will issue a warning to the user.

Simulation Mode Support
RTW does not support the simulation modes in
LaSRS++.  To operate within a LaSRS++ simulation,
the auto-code must behave properly in the four major
modes RESET, TRIM, HOLD, and OPERATE.  Fur-
thermore, the auto-code must behave properly through
multiple runs (i.e., cycles of RESET-TRIM-HOLD-
OPERATE) without the need to shutdown the simula-
tion and restart it.

In RESET, the simulation resets the elapsed time to
zero and defines the scenario for the next run.  During
RESET, the simulation calls the initialize() method of
all SimulationModel objects.  SimulinkModel, which
derives from SimulationModel, resets the elapsed time
in the auto-code by calling sfcnInitializeSampleTimes()
in its initialize() method.  Any signals in the model that
require initialization must be connected to a root-level
“inport” block.  The SimulinkModel client is responsi-
ble for passing the initial value to the SimulinkModel.

In aircraft simulation, it is undesirable to have transient
behavior in the first few seconds of operation; in fact,
such transients can prevent safe use of a motion system.
The aircraft simulation must be initialized to a steady
state before operating.  The simulation contains algo-
rithms that solve for the steady-state values of the
simulation states.  In LaSRS++, these algorithms are
exercised in TRIM mode.  LaSRS++ uses a simple trim
algorithm of the form:4
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where x is an independent state, g is a gain, y is a de-
pendent value, and m is the number of equations re-
quired to trim the aircraft for the given scenario.  The
equation calculates a new state with the purpose of re-
ducing the dependent values to zero; thus, the depend-
ent values are frequently referred to as the error.  The
gains set the proper direction and scale to make the al-
gorithm work.  The algorithm operates in a loop.  For
each pass, the simulation operates the math models with
the new states; then, the algorithm updates the states.
The process repeats until the magnitude of the error
vector becomes smaller than a defined tolerance.

To successfully and efficiently “trim” in LaSRS++, all
math models modify their behavior in two fundamental
ways.  First, transfer functions calculate the steady-state
output for their input in one pass¶¶ and initialize their
states to the steady-state condition.  Second, integrators
do not integrate.  Their output is set to a value, possibly
controlled by the trim algorithm.  In many cases, the
integrator’s input (i.e., the derivative) must be reduced
to zero; i.e., the derivative becomes an error value in the
trim algorithm.  It is not unusual for the derivative’s
corresponding trim state (i.e. the state with the greatest
influence on its value) to be the integrator output.

The RTW auto-code has no feature similar to the TRIM
mode in LaSRS++.  TRIM behaviors must be designed
into the Simulink model.  The Simulink user must as-
sign a root inport block to be the TRIM flag.5  Cur-
rently, the SimulinkModel design does not force the
first inport block to be the TRIM flag.  Since Simu-
linkModel cannot know which signal is the TRIM flag,
the LaSRS++ client code must set the flag appropri-
ately.  When the flag is high, the Simulink model will
activate TRIM mode behaviors; otherwise, the model
will behave normally.

All integrators in the model must be reset integrators.5

If the integrator output is a state in the trim algorithm,
then the initial condition signal must be connected to a
root-level inport block.  If the derivative is an error in
the trim calculation, the input signal to the integrator
                                                          
¶¶ In other words, the transfer function must supply the
output that results if the input is applied for an infinite
amount of time.

must be connected to a root outport block. The reset
switch must be connected to the TRIM signal.  The re-
set integrator will work as expected if it outputs the
reset input when the TRIM signal is high.  This was the
reset integrator’s behavior in the Simulink 1.0.  How-
ever, Mathwork’s decided to change the behavior start-
ing with Simulink 2.0.  Now, reset integrators use the
reset input when the reset switch changes value. The
TLC for the GRTM target was changed to restore the
original behavior of the reset integrator.

Transfer function blocks (discrete or continuous) cannot
be used; the blocks have no ability to reset themselves
or compute their steady-state output in one pass.5  In-
stead, transfer functions must be re-implemented as a
system block containing reset integrators, and they must
be designed to return the steady state output when the
elapsed time is zero.  The research community at LaRC
has created a library of these transfer function replace-
ments.  Other behavior modifications for TRIM mode
must be linked to a switch whose decision input is the
TRIM signal.

In TRIM, the client code is responsible for communi-
cating states and errors to the trim algorithm.  The client
code also retrieves newly calculated states from the trim
algorithm and communicates them to the Simulink-
Model object.  The client sets the TRIM input high and
calls SimulinkModel::update() to compute new error
values from the new states.  SimulinkModel::update()
has logic that prevents integration, incrementing time,
and data logging while not in OPERATE mode.  Inte-
gration and incrementing time would interfere with the
TRIM algorithm.  Data logging is undesirable in TRIM;
the purpose of data logging is to record the model’s
behavior during operation.  SimulinkModel provides
these behavior modifications for TRIM mode without
the need for intervention from the client code.

In HOLD, the simulation does not update its states; and
the simulation time does not increment.  The vehicle is
frozen.  This is best achieved by not exercising the math
models.  However, there are special cases where a math
model needs to run in HOLD.  Thus, SimulinkModel
allows its update() method to be called in HOLD mode.
However, as stated previously, SimulinkModel will not
perform integrations, increment time for the Simulink
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model, or log data except in OPERATE
mode.  These operations would violate the
intent of HOLD mode.

In OPERATE, the client communicates inputs
to the Simulink model by calling putRootIn-
put().  Then, it calls update() for the Simu-
linkModel object.  When update returns, the
client extracts the SimulinkModel’s outputs
by calling getRootOuput() and communicates
the outputs to the simulation.  Optionally, the
client will also call error() and take appropri-
ate steps if an error is reported.  The Simulink
model requires no special considerations to
behave properly in OPERATE; it is designed
to operate.

The root issue that prevents RTW auto-code
from performing correctly through multiple
runs is that RTW does not provide an inter-
face for resetting the model once it begins
operation.  However, the changes that enable
correct behavior in RESET and TRIM mode also estab-
lish this missing interface.  A Simulink model built us-
ing the guidelines above will safely restart without the
need to completely terminate it and recreate it.

Example
This section provides an example of adding the Simu-
linkModel class to a LaSRS++ simulation.  A customer
has built a Simulink model called simple_control_law
illustrated in Figure 3.  This model contains an integra-
tor in the longitudinal law that must be added to the trim
algorithm.  The derivative is the error and its output is
the derivative’s companion state.  As required for the
LaSRS++/RTW interface, the integrator’s reset value is
attached to inport block #2 and the derivative is ex-
ported through outport block #4.  Also, a trim flag is
installed as inport block #1.  Though not visible, all
transfer functions have been re-implemented with reset
integrators.  To illustrate how the root-level “port”
blocks map to SimulinkModel’s I/O vectors, the “Ac-
cels_g” block has a length of three.

Code Generation
To generate code, the Simulink user selects the Generic
Real-Time Target and configures it for “code generation
only” as specified in the Realtime Workshop User’s
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tics and Astronautics

ide.6  In this example, the user does not identify data
 RTW data logging and the model does not contain
Workspace blocks.  Thus, the user does not need to
ange settings for data logging.  The user launches the

ulation Parameters dialog (Simulation-
arameters->Solver) and sets the solver to fixed-
p and single-tasking mode.  The user also sets the
p size to the simulation step size.  The user then gen-
tes the code by selecting Tools->RTW Build.

ient Code
ure 4 and 5 provides the client code that integrates
 model into the LaSRS++ simulation##. In this exam-
, the client code is a class derived from the Simu-
kModel class.  Figure 4 shows the header file.  Enu-
rations are used to name the indices into Simulink-
del’s I/O vectors.  The enumeration simplifies code

anges if later revisions of the model reorder the root-
el “port” blocks; only the value of the enumeration
st be changed to correct the client code.  The index
 putRootInput() starts with zero, following C++ con-
                                                      
For brevity, the code shown is simplified for the dis-
ssion.  It does not accurately reflect the code, as it
uld appear in a LaSRS++ simulation.  But it does
resent the level of work required for the client code.
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flag appropriately.  It also injects
the currently computed trim
value for the pitch law integrator.
It retrieves data from the parent
aircraft and copies it to Simu-
linkModel’s input vector.  For
brevity, the code does not show
the complete list of putRootIn-
put() calls.  Then, the method
calls SimulinkModel::update() to
run the RTW code.  If in TRIM
mode, the method calculates a
new trim value for the pitch law
integrator; the derivative input to
the integrator is the error in the
algorithm. The method concludes
by checking whether the auto-
code reported any errors and
terminates the simulation if any
were found.  The only step now
remaining is to add the Exam-
pleModel code and RTW auto-

l

#include "SimulinkModel.hpp"

class Aircraft; // Base class for all aircraft models.

class ExampleModel: public SimulinkModel {
public:
enum InputMap {TRIM_FLAG = 0, QI_RESET= 1, PITCH_STICK= 2,

ROLL_STICK= 3, PEDALS = 4, PITCH_RATE = 5,
ROLL_RATE = 6, YAW_RATE= 7, AOA = 8,
BETA = 9, TAS = 10, QBAR = 11,
THETA = 12, PHI = 13, ACCEL_X = 14,
ACCEL_Y = 15, ACCEL_Z = 16};

enum OutputMap {RUDDER_CMD = 0, AILERON_CMD= 1,
ELEVATOR_CMD= 2, QI_INPUT = 3}

ExampleModel(Aircraft* parent_aircraft);
virtual void update();
double getRudderCmd() const {getRootOutput(RUDDER_CMD);};
double getAileronCmd() const {getRootOutput(AILERON_CMD);};
double getElevatorCmd() const {getRootOutput(ELEVATOR_CMD);};
void putPitchStick(double x) {putRootInput(PITCH_STICK,x);};
void putRollStick(double x) {putRootInput(ROLL_STICK,x);};
void putPedals(double x) {putRootInput(PEDALS,x);};

private:
Aircraft* aircraft; // Pointer to parent aircraft.
double qi_reset; // Reset value for pitch law integrator.

}

Figure 4  Header for ExampleMode
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t start with one which is Simulink
st three elements of the input vector
eration components represented by
k.  Thus the example illustrates that

SimulinkModel vectors do not nor-
t-level port numbers in the Simulink
r is maintained.  The class provides
r the pilot commands that directly

nto SimulinkModel’s input vector.
 includes accessor methods for the
mmands that directly extract data
l’s output vector.

 body file for ExampleModel class.
des C-style external declaration of
tion function, simple_control_law.
l constructor passes the registration
structor for SimulinkModel.  It also
kModel to obtain its Mode and
from the parent aircraft.  It disables
data logging.  ExampleModel rede-
ehavior that it inherits from Simu-

ple-Model::update() sets the TRIM

code to the LaSRS++ project
makefile and build the simulation.

Conclusions
The resultant LaSRS++/RTW integration is simple to
reuse.  The basic interface consists of a single class
called SimulinkModel.  SimulinkModel reduces the
auto-code to a system with one input vector and one
output vector.  SimulinkModel has only four behaviors:
construction, initialization, update, and destruction.
The registration function that is passed as a constructor
argument determines the Simulink model that the Simu-
linkModel object encapsulates.  The SimulinkModel
class also provides limited support for RTW’s data log-
ging and external mode features.  The design was real-
ized with minor modification to RTW; in fact, only one
TLC modification was made to force reset integrators to
use the reset input when the reset switch was set to high.
Also, the RTW library source had to be modified to
accommodate multiple Simulink models in a simulation.
Establishing guidelines for Simulink model construction
and auto-code generation solved most of the integration
issues.  The SimulinkModel class will work with any
Simulink model that follows the guidelines.  The Simu-
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#include "ExampleModel.hpp"
#include "Aircraft.hpp"

extern “C” { // Registration function prototype.
extern SimStruct* simple_control_law(void);

}

ExampleModel::ExampleModel(Aircraft* parent_aircraft):
SimulinkModel(parent_aircraft->getMode(),

parent_aircraft->getTimer(),
simple_control_law, false, 0, false, false),

aircraft(parent_aircraft),
qi_reset(0.0)

{}

void ExampleModel::update() {
// For brevity, not all putRootInput calls are shown.
putRootInput(TRIM_FLAG , getMode() == TRIM);

  putRootInput(QI_RESET , qi_reset);
putRootInput(PITCH_RATE, aircraft->getQ());
putRootInput(AOA , aircraft->getAlpha());

SimulinkModel::update(); // Executes the model

// Trim algorithm for illustration.
if (getMode() == TRIM) {
qi_reset += -0.1 * getRootOutput(QI_INPUT);

} else {
 qi_reset = 0.0;
}
if (error()) exit(-1);
}

11
American Institute of Aeronautics and Astronautics

ink user must generate auto-code using the “Generic
eal-Time Malloc” target but no special steps were
dded to the code generation process.  The simulation
eveloper writes only a small amount of code to inte-
rate the SimulationModel object.  This code sets con-
truction arguments, calls operations at the appropriate
ime, populates the input vector, extracts data from the
utput vector, and performs error checking.
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